首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87818篇
  免费   1223篇
  国内免费   1081篇
安全科学   3633篇
废物处理   3178篇
环保管理   13611篇
综合类   20962篇
基础理论   25884篇
环境理论   72篇
污染及防治   13478篇
评价与监测   5309篇
社会与环境   3488篇
灾害及防治   507篇
  2022年   760篇
  2021年   797篇
  2020年   649篇
  2019年   857篇
  2018年   1094篇
  2017年   1123篇
  2016年   2122篇
  2015年   1819篇
  2014年   2567篇
  2013年   9240篇
  2012年   2069篇
  2011年   2237篇
  2010年   3200篇
  2009年   3331篇
  2008年   1768篇
  2007年   1590篇
  2006年   2085篇
  2005年   2127篇
  2004年   2415篇
  2003年   2276篇
  2002年   1813篇
  2001年   2116篇
  2000年   1905篇
  1999年   1464篇
  1998年   1359篇
  1997年   1305篇
  1996年   1435篇
  1995年   1568篇
  1994年   1450篇
  1993年   1298篇
  1992年   1303篇
  1991年   1269篇
  1990年   1227篇
  1989年   1198篇
  1988年   1030篇
  1987年   967篇
  1986年   984篇
  1985年   1058篇
  1984年   1148篇
  1983年   1162篇
  1982年   1170篇
  1981年   1089篇
  1980年   937篇
  1979年   913篇
  1978年   815篇
  1977年   711篇
  1976年   636篇
  1975年   603篇
  1973年   624篇
  1972年   629篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Ecologically relevant traits of organisms in an assemblage determine an ecosystem's functional fingerprint (i.e., the shape, size, and position of multidimensional trait space). Quantifying changes in functional fingerprints can therefore provide information about the effects of diversity loss or gain through time on ecosystem condition and is a promising approach to monitoring ecological integrity. This, however, is seldom possible owing to limitations in historical surveys and a lack of data on organismal traits, particularly in diverse tropical regions. Using data from detailed bird surveys from 4 periods across more than a century, and morphological and ecological traits of 233 species, we quantified changes in the avian functional fingerprint of a tropical montane forest in the Andes of Colombia. We found that 78% of the variation in functional space, regardless of period, was described by 3 major axes summarizing body size, dispersal ability (indexed by wing shape), and habitat breadth. Changes in species composition significantly altered the functional fingerprint of the assemblage and functional richness and dispersion decreased 35–60%. Owing to species extirpations and to novel additions to the assemblage, functional space decreased over time, but at least 11% of its volume in the 2010s extended to areas of functional space that were unoccupied in the 1910s. The assemblage now includes fewer large-sized species, more species with greater dispersal ability, and fewer habitat specialists. Extirpated species had high functional uniqueness and distinctiveness, resulting in large reductions in functional richness and dispersion after their loss, which implies important consequences for ecosystem integrity. Conservation efforts aimed at maintaining ecosystem function must move beyond seeking to sustain species numbers to designing complementary strategies for the maintenance of ecological function by identifying and conserving species with traits conferring high vulnerability such as large body size, poor dispersal ability, and greater habitat specialization. Article impact statement: Changes in functional fingerprints provide a means to quantify the integrity of ecological assemblages affected by diversity loss or gain.  相似文献   
32.

Equilibrium sorption studies of anionic species of arsenite, As(III) ions and arsenate As(V) ions onto two biosorbents, namely, chitosan and nanochitosan, have been investigated and compared. The results and trends in the sorption behavior are novel, and we have observed during the sorption process of the As(III) and As(V) on chitosan, a slow process of desorption occurred after an initial maximum adsorption capacity was achieved, before reaching a final but lower equilibrium adsorption capacity. The same desorption trend, however, is not observed on nanochitosan. The gradual desorption of As(III) and As(V) in the equilibrium sorption on chitosan is attributed to the different fractions of the dissociated forms of arsenic on the adsorbent surface and in solution and the extent of protonation of chitosan with the changing of solution pH during sorption. The change of solution pH during the sorption of arsenite ions on chitosan was also influenced by the interaction between the buffering effect of the arsenite species in the aqueous medium and the physical properties of chitosan. The final equilibrium adsorption capacity of chitosan for As(III) and As(V) was found to be around 500 and 8000 μg/g, respectively, whereas the capacities on nanochitosan are 6100 and 13,000 μg/g, respectively.

  相似文献   
33.
34.
35.
36.
An intermediate bulk container (IBC) was punctured during its handling, releasing a refined oil product onto land at a large construction site in an environmentally sensitive region of Australia. Understanding and controlling the risks from fuel, oil, and chemical spills on the current project was of critical importance as part of the project's overall approval, and ongoing compliance depended on the project committing to minimizing all chemical and petroleum hydrocarbon spills on the site. The telehandler (forklift) did not pierce the plastic of the IBC directly (as was expected to be the case) but rather one of the tynes caught on the underside of the metal base plate (pallet belly plate), despite numerous controls being in place at the time of spill (to limit the risks of damaging the IBC), revealing a previously unreported mechanism for a fluid spill from handling of petroleum hydrocarbons and related chemicals. The investigation team used a root cause analysis (RCA) technique, based on the fishbone (Ishikawa) diagram, which was undertaken with 12 expert contributors (from the project) to identify the underlying cause: The inspection process was inadequate. This study is a companion to the article published in Winter 2014 in Remediation (Guerin, 2014) covering multiple causes of spills from plant and equipment commonly used on construction and remediation projects. ©2015 Wiley Periodicals, Inc.  相似文献   
37.
Objectives: The accuracy of self-reported driving exposure has questioned the validity of using self-reported mileage to inform research questions. Studies examining the accuracy of self-reported driving exposure compared to objective measures find low validity, with drivers overestimating and underestimating driving distance. The aims of the current study were to (1) examine the discrepancy between self-reported annual mileage and driving exposure the following year and (2) investigate whether these differences depended on age and annual mileage.

Methods: Two estimates of drivers’ self-reported annual mileage collected during vehicle installation (obtained via prestudy questionnaires) and approximated annual mileage driven (based upon Global Positioning System data) were acquired from 3,323 participants who participated in the Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study.

Results: A Wilcoxon signed rank test showed that there was a significant difference between self-reported and annual driving exposure during participation in SHRP 2, with the majority of self-reported responses overestimating annual mileage the following year, irrespective of whether an ordinal or ratio variable was examined. Over 15% of participants provided self-reported responses with over 100% deviation, which were exclusive to participants underestimating annual mileage. Further, deviations in reporting differed between participants who had low, medium, and high exposure, as well as between participants in different age groups.

Conclusions: These findings indicate that although self-reported annual mileage is heavily relied on for research, such estimates of driving distance may be an overestimate of current or future mileage and can influence the validity of prior research that has utilized estimates of driving exposure.  相似文献   

38.
A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method was developed for the determination of thiamethoxam and its metabolite clothianidin in citrus (including the whole citrus, peel and pulp) and soil samples by liquid chromatography-tandem mass spectrometry. The sample was extracted with acetonitrile and purified with octadecylsilane. The detection limits of both compounds were 0.0001–0.0002?mg kg–1, while the limit of quantification of thiamethoxam was 0.002?mg kg–1 and the limit of quantitation of metabolites was 0.001?mg kg–1. The recovery was 70.37%–109.76%, with inter-day relative standard deviations (RSD) (n?=?15) values ≤9.46% for the two compounds in the four matrices. The degradation curve of thiamethoxam in whole citrus and soil was plotted using the first-order kinetic model. The half-life of the whole citrus was 1.9–6.2?days, and the half-life of the soil was 3.9–4.2?days. The terminal residue of thiamethoxam (the sum of thiamethoxam and clothianidin, expressed as thiamethoxam) was found to be concentrated on the peel. The final residual amount of thiamethoxam in the edible portion (pulp) was less than 0.061?mg kg–1. The risk quotient values were all below 1, indicating that thiamethoxam as a citrus insecticide does not pose a health risk to humans at the recommended dosage.  相似文献   
39.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号